PROGRAMA PARA O CONCURSO PÚBLICO DE PROVAS E TÍTULOS PARA A CARREIRA DO MAGISTÉRIO SUPERIOR 2025

Área: Química

Área do conhecimento: Físico-Química

Número de vagas: 01 (uma)

Regime de trabalho: Dedicação Exclusiva

Titulação: Doutorado em Química, Engenharia Química, Físico-Química ou Ciências: Área de

concentração Físico-Química

Lotação: UFPR/Departamento de Química / Subárea de Físico-Química

Professor: Adjunto

Classe: A

PERFIL DO CANDIDATO

Atuação e pesquisa em Energias Renováveis, entendidas como procedimentos e tecnologias voltados a materiais ou fontes que possam ser reutilizadas, caracterizadas pela tese ou por publicações em periódicos especializados. Deseja-se que o candidato tenha uma sólida formação em química, com foco especial e comprovado na área de Energias Renováveis, abrangendo os possíveis tópicos: I) desenvolvimento de materiais sustentáveis e energias renováveis, II) tecnologia na geração e/ou armazenamento de hidrogênio e outros combustíveis verdes, III) tratamento e reutilização de biomassa e/ou resíduos para a geração de energia, IV) catálise heterogênea aplicada e V) geração e armazenamento de energia elétrica a partir de fontes renováveis. Espera-se igualmente que o candidato seja capaz de demonstrar aptidão para o desenvolvimento de atividades didáticas em disciplinas de físico-química, nos níveis de graduação e de pós-graduação, assim como também em química geral. Também é desejável que o candidato demonstre competência para o desenvolvimento de atividades de

pesquisa e extensão universitária, assim como para a orientação de estudantes de graduação (iniciação científica), mestrado e doutorado. Espera-se que o candidato tenha capacidade para liderar grupo de pesquisa, captar recursos financeiros e gerenciar projetos de pesquisa.

PROGRAMA PARA AS PROVAS

Termodinâmica

Teoria Cinética dos Gases Leis da Termodinâmica Equilíbrio Químico e de Fases

Espectroscopia Vibracional

Modelo do Oscilador Harmônico e Anarmonicidade Técnicas de Infravermelho e Raman

Eletroquímica

Eletroquímica no Equilíbrio Cinética Eletroquímica Técnicas Eletroquímicas

Cinética Química

Leis de Velocidade Mecanismos de reação Catálise Homogênea Catálise Heterogênea

<u>BIBLIOGRAFIA</u>

Atkins, P. W. e de Paula, J., Físico-Química, vols. 1 e 2, 10^a edição, Rio de Janeiro, LTC (2021).

Levine, I. N., Físico-Química, vols. 1 e 2, 6ª edição, Rio de Janeiro, LTC (2012).

Castellan, G., Fundamentos de Físico-Química, Rio de Janeiro, LTC (1999).

McQuarrie, D.A., Simon, J.D.; Physical Chemistry: A Molecular Approach, University Science Books: USA (1997).

Silbey, R. J., Alberty, R. A., Bawendi, M. G. e Papadantonakis, G. A., Physical Chemistry, 5th edition, Wiley (2022).

Bard, A. J., Faulkner L.R. Electrochemical Methods, Fundamentals and Applications, 2nd edition, Wiley (2001)

Mortimer, R. G., Physical Chemistry, 3rd edition, Elsevier (2008).

Vemulapalli, G. K., Physical Chemistry, Englewood Cliffs, Prentice-Hall (1993).

Somorjai, G.A; Introduction to Surface Chemistry and Catalysis. Wiley: New Jersey, (2011).

Kanoglu, M., Çengel, M., Cimbala, J. Fundamentals and Applications of Renewable Energy. McGraw Hill (2019).

Sorensen, B. Renewable Energy Physics, Engineering, Environmental Impacts, Economics and Planning, 5th Ed. Academic Press (2017).